Tag Archives: #3DP

Makers: The New Industrial Revolution by Chris Anderson

An Unofficial Book Review

3DP_makers.jpg
An Unofficial Book Review: Makers: The New Industrial Revolution by Chris Anderson

I am very fortunate to come to 3D printing as a “newbie” and have the opportunity to explore the possibilities of this rapidly growing industry — in the words of Avi Reichental of 3D Systems, “exponentially growing.”

Not first and foremost a technology person, I am still able to grasp the concepts of 3D printing and what makes it such an exciting phenomenon. Ideas like empowerment, democratization, customization, open-source sharing and the potential of the amazing creativity of the DIY movement in combination with open-source technology. I am excited by the possibilities, more and more of them realized each and every day.

In Makers: The New Industrial Revolution, Chris Anderson, author of the best-selling, The Long Tail, and editor in chief of Wired, explains the sources of this excitement and adds to it as he discusses the potential for 3D printing to jump-start U.S. manufacturing, where employment as a percentage of total working population is at a century-long low.

Anderson presents this vision of the future through two starting images, one from personal experience and one from a more abstract realm, that of science. His personal experience was of his grandfather, a lifelong tinkerer, who developed and patented an early automatic sprinkler system, something much-needed in the California of his time with its hot sun and residents’ insistence on green lawns.

In following the story of his grandfather as Anderson compares that experience to the experience of today’s tinkerers, “Makers,” we begin to understand how profoundly significant the difference is. As Anderson says of today, “any kid with an idea and a laptop can create the seeds of a world-changing company.” Much of the book is devoted to looking at the dimensions of that difference, primarily centered around giving tinkerers a computer and a connection to the Internet.

The other image that tells the story is the scientific one, the transition from bits to atoms. This image describes how we will take what we have discovered in the last ten years about creating, inventing and working together on the Web (bits) and reapply that knowledge to the real world (atoms). Physical objects begin as computer designs, and the designers share the designs online as files. A movement that began in factories and industrial design shops is moving into homes and garages and basements.

Touring this changing landscape with Anderson, I gained some surprising new perspectives. In talking about what revolutions can do, he described the movement from farmland into factories in the city and talked about the improvement in health that industrialization provided despite romantic claims to the contrary. Brick buildings in the cities protected people from damp and disease, and mass-produced cheap cotton clothing and good-quality soap allowed “even the poorest” to have clean clothing and better hygiene. Increased income allowed a better, more varied diet and improved access to healthcare, schools and other shared resources (pp. 36-37).

The productivity enhancements of the First and Second Industrial Revolutions drove worldwide economic growth. They changed everything “from longevity and quality of life to where people live and how many there are of them” (p. 38).

Many view the Information Age as the Third Industrial Revolution. Anderson argues that it was not an industrial revolution until it had a “democratizing and amplifying effect on manufacturing,” similar to the first two revolutions. He says the “Third Industrial Revolution is best seen as the combination of digital manufacturing and personal manufacturing: the industrialization of the Maker Movement.” The digital transformation not only makes existing manufacturing more efficient, it extends manufacturing to a hugely expanded population (p. 41).

The tools of 3D printing, the printers and the laser cutters, are ways to turn bits into atoms. And the process works in reverse too! “Reality capture” starts with an object, scans it and turns it into an image that can be manipulated and modified onscreen.

Piece by piece, Anderson examines the components that have created the specific characteristics of this Third Industrial Revolution: open hardware, building “communities” on open organization models, reinventing the old big factories and the maker movement.

He wonders, “Can Makers make jobs?” pointing out that as output doubled over the past four decades, manufacturing employment fell by about 30 percent over the same period (p. 153). I have watched that happen and experienced repeated calls for “retraining” in the manufacturing world, as jobs went away, never to return.

Anderson also points out that outsourced jobs are becoming more expensive as wages rise dramatically in countries to which we outsource, making them less of a threat.

He observes that the Maker Movement in essence finances itself by sharing designs, letting consumers manipulate and customize them, then pay for the output. In addition, crowd-funding advances the movement, giving it the lateral growth it requires to be a revolution.

Resulting Maker businesses represent the ultimate combination of atoms and bits — all described through the lense of stories about real people and their experiences.

The book is readable, explanatory, even exciting. It puts this newest revolution into the context of history, cultural history and manufacturing history. Its Appendix, “The 21st-Century Workshop,” invites us all, democratically, to join the revolution by providing brief introductions to its main tools.

In the meantime, follow us on Twitter (@3dprintingisfun) and like us on Facebook. Subscribe to this blog, or visit us at shop3duniverse.com.

3D Printing in every classroom, Part I

China to install printers in all 400,000 schools in the country.
China to install printers in all 400,000 schools in the country.

HOW to get it there: two models for getting 3DP into every classroom

Top Down 3D Printing in every classroom

In early April this year, a report began to circulate that “the Chinese government has a new policy to install a 3D printer in each of its approximately 400,000 elementary schools over the next two years.”

This bold move will station China at the forefront of the march to bring 3D printing technology to the classroom. It demonstrates a commitment to the democratization of learning, an ideal counterpart to the potential for 3D printing to democratize manufacturing or “making”.

With a printer in every classroom, all of China’s children will have an opportunity to experience this transformative technology and participate in a process that will change the way we manufacture, the way we design, the way we think.

Printers in 400,000 schools. That’s a bold and enviable initiative. It’s also a top-down initiative. What are the potential challenges involved in this approach?

Certainly preparedness of the infrastructure is a concern:

  • Will staff in every school be prepared to support and sustain this technology?
  • Will curricula be ready so that 3DP is integrated to learning in the most effective ways possible?
  • Will teachers be trained to incorporate 3DP into their classrooms in effective ways?
  • Will schools have an adequate ongoing supply of required materials?

Bottoms up 3D printing in every classroom

It’s hard to imagine us succeeding with a similar strategy in the U.S. Surely there would be years of painful budgetary wrangling accompanied by partisan attacks and counter-attacks.

In the U.S. we rely on generating excitement and interest at the grass roots level with federal and local level speeches, Maker Faires, science fairs and funding for centerpiece resources.

Last June 18, President Obama “hosted the first-ever White House Maker Faire and challenged ‘every company, every college, every community, every citizen [to] join us as we lift up makers and builders and doers across the country.’” The President called for an “all hands on deck” approach and suggested six projects that might help build student participation in “making.” This June, the White House will host the second Maker Faire.

Also in 2014, The America Makes Institute was established, members of Congress established a Makers Caucus, and $240,000,000 was designated for a new digital manufacturing hub in Chicago. Another $240,000,000 in STEM Commitments announced at the National Science Fair in 2015 included specifics related to 3D printing technologyand encouraging “makers.”

Other than generating excitement and seed funding, though, it has been up to individual schools, school districts and organizations to plan for and invest in 3D printing. There are an increasing number of wonderful 3DP projects initiated in individual classrooms and schools, several I’ll highlight in 3D Print in every classroom, Part III.

In our U.S. based business, sales to teachers, schools and school districts have been brisk, amounting to about 40% of all sales. This is encouraging news for getting 3D printers into every classroom!

Within the local framework, there are somewhat wider commitments in the U.S. Last week an announcement came out about Baltimore placing 3D printers in each of its 49 Archdiocese schools.

This strategy of relying on local interest, engagement and funding may result in some gains for long-term development and maintenance.

    • Doing the research and planning that results in 3DP funding in specific schools may make them better prepared to integrate 3DP technology into the students’ world.
    • Early-on engagement in local areas may produce the interest and skills to maintain a project.

On the other hand, relying on local interest and engagement means some kids will have more access than others. Some may not have access or only delayed access.

3D printing in every classroom: Top down or bottoms up?

These two models for bringing 3D printing to the classroom are very different. Each has inherent benefits and challenges.

  • Which model do you think will work better to get sustainable 3D printing programs into every school?
  • What ideas do you have for overcoming the challenge in a bottoms up model of reaching every child in this country?

Follow us on Twitter (@3dprintingisfun) and like us on Facebook. Subscribe to this blog, or visit us at shop3duniverse.com.

Coming up: 3D Printing in Every Classroom, Part II.

How does your garden grow? This year with 3D printing!

From 3Dponics: an easy to use and open sourced hydroponics system that turns small spaces into home gardens

No soil, no sun, no water, no problem with 3D printing

I keep telling myself that spring is on the way. Some days it even feels like it’s here. That must mean it’s time to get underway with a garden.

I used to have a 120′ x 60′ garden. Great drainage, plenty of sun. All the manure I wanted. Now I have a 10′ x 10′ deck. Too much sun. No soil on the deck. A virtually sunless area under the deck where the dirt is. I can glean a few more inches here and there around the base of trees and along the back of my townhome. If I’m lucky, I can get a five month growing season.

I will guess that most of us in the United States don’t live in situations that allow us to grow our own food. Even if we do have space, we probably don’t have ideal weather 12 months of the year. Enter 3D printing and micro farming.

How 3D printing can help you grow your garden

I wondered if 3D printing could help me grow food on my deck and in my house. A quick check on the internet provided me with these great possibilities.

Mike Adams, the “Health Ranger,” offers a Food Rising Mini-Farm Grow Box system based on 3D printing and hydroponics. As a lab science director and inventor, Mike was able to work with taulman3D to create the strong, water-tight material he needed for his project. The 3D printed components are made with taulman3D t-glase Polar White Filament. FoodRising provides instructions to build your own Grow Box, complete with 3D print specs.

3Dponics specializes in matching 3D technology to hydroponics. It is “an open-source initiative for the development of 3D models that are used to build efficient and affordable gardens.”

According to 3Dponics, their “MakerBot app makes creating unique gardens with 3D printing quick and easy. 3Dponics Inc., creator of the first 3D-printable hydroponics system, is releasing its first MakerBot-Ready App to enable anyone to 3D print their own 3Dponics parts: the 3Dponics Customiser.”

Computer scientist Yuichiro Takeuchi of Sony Computer Science Laboratories, Inc. has developed a 3D printer that will print a garden in any shape you design! His invention is also built on hydroponics, a growing system that replaces soil with mineral nutrients. Takeuchi’s vision is for barren city rooftops to be covered with growth. Maybe my deck can be a small practice project?

Here are all kinds of handy gardening tools to 3D print:

And well, sometimes girls (and guys) just wanna have fun – build a chess set garden with 3D printing technology:
http://www.treehugger.com/sustainable-product-design/3d-printed-chess-micro-planters-xyz-workshop.html

When you’re ready to go big time, here’s a project I love. FarmBot “hopes to create an open source hardware, software and data solution that allows anyone, anywhere to build and operate their 3D farming printer, the FarmBot.” 3D printing food is exciting, but it probably won’t work on the mass scale needed to feed the hungry. This system has the potential to do just that.

FrogDesign marks “4 Tech Trends That Will Define 2015.” Two of the four are 3D printing and … micro gardening! These enterprises we’ve shared just match them up.

Here’s one more idea, designers: what about creating a hand along the lines of a prosthetic device? With gardening attachments?

If the garden isn’t happening, 3D print your own food!

But that’s another post.

In the meantime, follow us on Twitter (@3dprintingisfun) and like us on Facebook. Subscribe to this blog, or visit us at shop3duniverse.com.